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Abstract
Extreme Multi-label Classification (XMC)
methods predict relevant labels for a given
query in an extremely large label space. Re-
cent works in XMC address this problem using
deep encoders that project text descriptions to
an embedding space suitable for recovering the
closest labels. However, learning deep mod-
els can be computationally expensive in large
output spaces, resulting in a trade-off between
high performing brute-force approaches and
efficient solutions. In this paper, we propose
PRIME, a XMC method that employs a novel
prototypical contrastive learning technique to
reconcile efficiency and performance surpass-
ing brute-force approaches. We frame XMC
as a data-to-prototype prediction task where
label prototypes aggregate information from
related queries. More precisely, we use a shal-
low transformer encoder that we coin as a La-
bel Prototype Network, which enriches label
representations by aggregating text-based em-
beddings, label centroids, and learnable free
vectors. We jointly train a deep encoder and
the Label Prototype Network using an adaptive
triplet loss objective that better adapts to the
high granularity and ambiguity of extreme la-
bel spaces. PRIME achieves state-of-the-art
results in several public benchmarks of dif-
ferent sizes and domains, while keeping the
model efficient. PRIME’s code is available at:
https://github.com/kunaldahiya/prime

1 Introduction

Extreme Multi-label Classification (XMC) is the
task of predicting the most relevant subset of la-
bels in an extremely large label space (potentially
millions of labels) for a given query data point.
XMC methods find applications in various real-
world problems, including product recommenda-
tion in e-commerce, document tagging, and spon-
sored search. The label is typically endowed with a
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Figure 1: Performance vs efficiency comparison for sev-
eral encoder-only methods in LF-AmazonTitles-1.3M
dataset and our PRIME proposal. Blob size represents
the models’ batch size, y-axis performance, and x-axis
number of negatives per query. Note that different ver-
sions of DEXML and PRIME vary the negative pool and
the batch size, which dominate the method’s efficiency.

short description in such applications. For instance,
in a product label space, "Kerplunk!: Stories" and
"The Good Samaritan Strikes Again" are relevant
labels for the query "The Grasshopper Trap". In
this example, relevancy is defined by products that
were seen or bought together, while other appli-
cations might define different relevancy relations.
The complete example is presented in Table 1. Note
that all the relevant relations are often not available
in the ground truth in such a large space, i.e., there
are missing labels.

XMC algorithms typically learn an encoder
and extreme classifiers either jointly (Jain et al.,
2023) or separately by following a modular ap-
proach (Dahiya et al., 2021b; Zhang et al., 2021b;
Yadav et al., 2024). This modular approach allows
for effortless utilization of label metadata in the
form of text (Dahiya et al., 2021a), images (Mittal
et al., 2022), or graphs (Saini et al., 2021), thereby
enhancing encoder’s accuracy. Therefore, learn-
ing a robust encoder has become a cornerstone for
XMC methods.

https://github.com/kunaldahiya/prime


Query Positive labels (×7)
"How I Got This Way",
"Circles in the Snow: A Bo Tully Mystery",

"The Grasshopper "With Recipes and Commentaries",
Trap" "Real Ponies Don’t Go Oink!",

"The Good Samaritan Strikes Again",
"Kerplunk!: Stories.", "The Bear in the Attic"
DEXA predictions (×5)

"The Ant and the Grasshopper: An Aesop’s Fable",
"Ant and Grasshopper", "Grasshopper" (ID1),
"Grasshopper" (ID2), "Grasshopper" (ID3).

PRIME predictions (×5)
"Kerplunk!: Stories", "The Good Samaritan Strikes Again"

"The Tamarack Murders: A Bo Tully Mystery",
"How I Got This Way", "The Bear in the Attic".

Table 1: Qualitative example from LF-AmazonTitles-
1.3M dataset. PRIME recovers semantically related
products, while DEXA predicts irrelevant ones contain-
ing some query words. Red and green indicate incorrect
and correct predictions, respectively.

Several recent works in the XMC literature fo-
cus on learning robust deep encoders using metric
learning style of training (Dahiya et al., 2023a,b;
Gupta et al., 2024; Mohan et al., 2024). Most of
these methods follow a data-to-data metric learning
approach, meaning that query and label sentence
embeddings are directly obtained from their text
descriptions. Although it is possible to obtain top
performance using a data-to-data brute-force ap-
proach (Gupta et al., 2024) that incorporates all
negative labels per query, this strategy is prohibitive
in most real-world settings. In particular, this ap-
proach incurs a cost of O (KL) to compute query
or label embeddings, where L is the number of
labels, and K is the complexity of encoding the
sentence embeddings (please see section E in the
Appendix for further details). We stress that XMC
algorithms should be designed both to achieve top-
performance and scale well to large datasets.

In this paper, we introduce a novel method called
PRIME, which efficiently learns a robust encoder
by leveraging data-to-prototype relations. We are
inspired by works demonstrating that embedding
representations from groups of data points can nar-
row down metric learning complexity (Snell et al.,
2017; Dopierre et al., 2021; Kim et al., 2020). In
particular, we compute label embeddings using a
novel Label Prototype Network that learns to aggre-
gate text-based embeddings, label centroids, and
learnable free vectors. We refer to the proposed
aggregated representation as a label prototype as
multiple queries are used for its estimation. This
architectural design is a key difference with simi-
lar works such as NGAME (Dahiya et al., 2023a),

DEXA (Dahiya et al., 2023b) or DEXML (Gupta
et al., 2024), which either do not exploit any ad-
ditional information than label text (Dahiya et al.,
2023a; Gupta et al., 2024) or do not use queries nor
a learned aggregation for computing label represen-
tations.

Additionally, extreme multi-label tasks have an
intrinsic high granularity and ambiguity due to the
variable hardness of positive and negative labels
in such a large space. Then, for better adaptation
to extreme label spaces, we propose to incorpo-
rate a dynamic margin in our training loss objec-
tives. Note that related works based on similar
objectives (Dahiya et al., 2023a,b; Mohan et al.,
2024) do not account for this situation. We empiri-
cally show that this margin is a simple yet effective
mechanism to boost XMC performance and theo-
retically demonstrate its effect (see Appendix A).
More precisely, the proposed dynamic margin en-
ables positive and negative labels to be projected
closer in the embedding space when they are se-
mantically related, while also considering uncertain
cases with ambiguous samples or missing labels
(a well-known limitation in extreme label spaces).
As a result, PRIME can recover semantically re-
lated products more accurately than related meth-
ods (we refer the reader to Table 1 for a visual
example). Furthermore, our experiments demon-
strate that PRIME achieves state-of-the-art results
within a single GPU budget and outperforms brute-
force approaches defined in DEXML (Gupta et al.,
2024) (encoder-only) and Renée (Jain et al., 2023)
(extreme classifier-based). Note that solutions like
DEXML use up to 16×A100 GPUs in some con-
figurations.

Our main contributions are as follows:

• We propose a high-performing yet efficient
XMC encoder-based method based on label
prototypes that aggregate information from
multiple queries.

• Our multi-objective optimization incorporates
a novel adaptive triplet loss formulation that
accounts for high granularity and uncertainty,
inherent to extremely large label spaces.

• PRIME yields large performance improve-
ments when compared with methods requiring
comparable resources (see Figure 1). PRIME
notably outperforms brute-force approaches
in all experiments and for most metrics, while
maintaining efficiency.



2 Related work

Extreme Multi-label Classification (XMC). Deep
XMC methods (You et al., 2019; Kharbanda et al.,
2022; Chien et al., 2023; Dahiya et al., 2023b;
Gupta et al., 2024) have demonstrated that learning
task-specific embeddings can yield significantly
more accurate results as compared to traditional
methods (see Appendix G for details). It is well
established that jointly learning the encoder and
the extreme classifiers can be expensive with a
large number of labels (Dahiya et al., 2021b). In
particular, the brute-force approach employed by
Renée (Jain et al., 2023) can lead to accurate results,
however, it is expensive to scale beyond a million
labels even with multiple GPUs. Negative sam-
pling approaches, i.e., ANCE (Xiong et al., 2021)
and NGAME (Dahiya et al., 2023a) narrow down
the training complexity by selecting a small subset
of hard negative labels. Moreover, several meth-
ods use a modular strategy (Dahiya et al., 2021b;
Zhang et al., 2021b) that decouples the training
of encoders and classifiers to improve scalability.
ECLARE (Mittal et al., 2021), PINA (Chien et al.,
2023), and XR-Transformers (Zhang et al., 2021a)
train the encoder by learning meta-classifiers, i.e.,
classifiers are learned for groups of labels. Con-
versely, NGAME (Dahiya et al., 2023b) proposed
to learn a shared deep encoder in a Siamese fash-
ion, where labels are represented via label embed-
dings. Building on NGAME, DEXA (Dahiya et al.,
2023b) introduces auxiliary parameters to bridge
the semantic gap, i.e., the lack of information to
accurately represent labels when their descriptions
are short. On the other hand, DEXML (Gupta et al.,
2024) demonstrates that Siamese deep encoders
alone can theoretically yield state-of-the-art results
using a brute-force approach with large batch sizes
and complete label sets as negatives.

Deep metric learning (DML). Contrastive
learning using the vanilla contrastive loss (Chopra
et al., 2005), triplet loss (Schroff et al., 2015) or
InfoNCE losses (Van den Oord et al., 2018) is the
core of DML across NLP and computer vision.
In NLP, they are widely used to learn robust sen-
tence representations (Gao et al., 2021; Zhang et al.,
2021a) or, more generally, multi-purpose embed-
dings with encoders (Wang et al., 2022) or decoder-
only architectures (Muennighoff et al., 2024; Wang
et al., 2024). As for XMC, DML has successfully
been applied using deep encoders (Dahiya et al.,
2023a,b; Mohan et al., 2024; Gupta et al., 2024).

However, this approaches are based on data-to-data
comparisons, which in XMC becomes specially
complex, as demonstrated by the great benefits of
increasing batch-wise comparisons (Gupta et al.,
2024). However, the DML community has pro-
posed alternatives to narrow down such complexity
exploiting data-to-prototype (Zeng et al., 2022) or
data-to-proxy (Kim et al., 2020) relations. Proto-
types and proxies are both representative embed-
dings for groups of semantically similar instances
(Kim et al., 2020; Zeng et al., 2022). The difference
is that proxies are usually learned as network pa-
rameters (Kim et al., 2020; Ren et al., 2024), while
prototypes are computed averaging embeddings
of related instances (Snell et al., 2017; Dopierre
et al., 2021; Song et al., 2022; Zeng et al., 2022).
Therefore, a few set of proxies or prototypes can
capture the global structure of an embedding space
and replace data-to-data comparisons for reduced
training complexity (Kim et al., 2020).

Adaptive triplet loss. The triplet loss (Schroff
et al., 2015) is a widely used alternative for metric
learning across many fields (Schroff et al., 2015;
Liu et al., 2021a; Nguyen et al., 2022). This loss
function ensures that anchor-positive label rela-
tions have higher similarity than anchor-negative
label ones, while including a margin to force a
sufficiently high similarity gap. Despite methods
in XMC using a fixed margin that lacks flexibil-
ity to address ambiguous situations (Dahiya et al.,
2023a,b; Mohan et al., 2024), some works in the
wider metric learning community have proposed
dynamic margins to tackle this limitation. For ex-
ample, (Liu et al., 2021b) propose a margin func-
tion for measuring more detailed similarities be-
tween taxonomy paths within the context of self-
supervised taxonomy expansion. In forensic medi-
cal image matching, the authors in (Nguyen et al.,
2022) propose an auto-margin strategy based on
exploiting similarity statistics over time. Similarly,
(So et al., 2023) work improves the triplet loss
by adapting the margin based on the interpolation
strength of mixed samples.

Decoder models. Decoder-only models provide
significant benefits over encoder-only ones in mul-
tiple natural language problems including entity
retrieval (De Cao et al., 2021), natural question
answering (Wang et al., 2022) or the MTEB bench-
mark (Muennighoff et al., 2024; Wang et al., 2024).
XLGen (Jung et al., 2023) and QUEST (Zhou
et al., 2024) have applied decoder-only models
in extreme classification. However, their perfor-
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Figure 2: Overview of PRIME - PRototypIcal extreME
multi-label classification. Our method exploits query-
to-prototype (hq to zl), query-to-label (hq to hl) and
label-to-query (hl to hq) embedding relations for ro-
bust encoder training. The Label Prototype Network gϕ
computes enhanced label embeddings zl (label proto-
types) by aggregating label-text embeddings hl, label
centroids cl and learnable free vectors vl. As a result,
the query-to-prototype similarity score bql(z) accurately
predicts the relevant labels for a given query.

mance is still far from current state-of-the-art mod-
els in XMC. A detailed investigation is required to
understand the underlying reasons for this limita-
tion. Nonetheless, decoder-only models remain a
promising research direction to follow in XMC.

3 Method

We propose PRIME, a novel method for XMC
based on label prototypes rather than the
usual text-based label embeddings from related
works (Dahiya et al., 2023a; Gupta et al., 2024;
Mohan et al., 2024). PRIME computes data-to-
prototype relations and uses a dynamic margin in
its triplet loss objectives, achieving state-of-the-art
results on multiple benchmarks. The overview of
PRIME’s architecture is presented in Figure 2.

Setup: Consider D = {qi,Pi}Qi=1 be a training
set with a set of Q queries Q = {qi}Qi=1, where
each query qi has a positive label set Pi. We define
the space of L labels Y = {lr}Lr=1 for any qi to be
a super-set of the positive Pi = {pj}Pi

j=1 and the
negative sets Ni = {nk}Ni

k=1. Pi and Ni are the
number of positive and negative labels associated
to qi, respectively. In practice, we differentiate two
types of approaches depending on the definition
of Ni: (i) brute-force, which use the complete set
of negatives for every query (Gupta et al., 2024);
(ii) negative mining, which sample a small subset

of hard negative labels during training to strike a
balance between accuracy and efficiency (Xiong
et al., 2021; Dahiya et al., 2023a).

We pose XMC as a maximum inner product
search task between query and label embeddings
to accurately predict the positive labels for every
query qi. To accomplish this, we aim to learn a
function fθ : (Q,Y) → Rd, where θ denotes
the parameters of a neural network model that
encodes the given textual representation into a d-
dimensional sentence embedding. This function
is used to encode every query qi and label lr into
hi
q and hr

l . Note that hl can be defined as hp and
hn to distinguish between positive and negative
text-based label embeddings, respectively.

Existing Siamese training for XMC (Dahiya
et al., 2023a; Mohan et al., 2024) directly imposes
a data-to-data triplet loss objective as follows:

LT =
B∑
i=1

∑
j∈Pi
k∈Ni

max(hi
q ·hk

n−hi
q ·hj

p+m, 0), (1)

where B is the number of batch queries, m is a
fixed margin and h refers to L2-normalized embed-
dings. We simplify the notation in Eq. 1 and refer
to LT (hq,hl) as LT . Also, Eq. 1 introduces abuse
of notation when using the set of negative labels
Ni as the subset of negatives used for each query.

For simplicity, in the remaining of the paper we
remove the superscript for query and label indexes
and re-define LT using similarity scores as:

LT = max (sqn − sqp +m, 0)

=

{
∆sn−p

q +m, if ∆sp−n
q ≤ m

0, otherwise
, (2)

where sqn = hq · hn and sqp = hq · hp denote
the query-negative and the query-positive cosine
similarities, respectively. We denote ∆sn−p

q =
sqn − sqp and ∆sp−n

q = sqp − sqn as the differ-
ences of the cosine similarities between the query-
positive and query-negative tuples, respectively.

3.1 Dynamic margin
The traditional triplet loss formulation presented
in Eq. 2 imposes a fixed margin m during training
such that all negatives are pushed apart from the
query, while positives are pulled close given the
condition ∆sp−n

q ≤ m. Despite being possible
to define margins that work well in practice, not
all triplets are equally hard, thus suggesting that



fixed values might be suboptimal. To overcome
this limitation, we propose a dynamic margin that
provides adaptation to each triplet hardness.

Proposition 1. Consider the non-differentiable
piece-wise linear function defining the adaptive
margin to be m (sap, san) = |sap − san|. Adding
m (sap, san) into Eq. 8 expands the support of the
function by relaxing the margin constraint of the
original triplet formulation, inducing a modulation
effect that allows semantically similar representa-
tions to be projected closer in the embedding space.

Intuitively, this modulation of the margin enables
a more informative embedding space by accounting
for degrees of similarities between positives and
negatives, i.e., the higher the semantic similarity,
the closer they will project. Conversely, for high
differences where negatives exhibit a much higher
similarity than positives, we impose a large penalty.

Proposition 2. Clipping the values of the dynamic
margin partitions the triplet loss landscape allow-
ing positives and negatives in uncertain settings to
be projected nearby in the embedding space.

Consider clip(x) be the clipping function,

clip(x) =


x, if γmin ≤ x ≤ γmax

γmin, if x < γmin

γmax, if x > γmax

,

and consider the conditions for query-to-label sim-
ilarities Cp : sqp > sqn and Cn : sqn > sqp be
the inequality conditions of the dynamic margin
defined in Proposition 1. Then, the triplet loss with
clipped dynamic margin LcdT becomes:

Lcd
T =


0, if Cp, ∆p−n

q ≥ γmin

∆p−n
q + γmin, if Cp, ∆p−n

q < γmin

∆n−p
q + clip

(
∆sn−p

q

)
, if Cn

.

(3)

In Eq. 3 we show that the addition of the dy-
namic margin removes the fixed margin constraint
of Eq. 1 enabling the model to learn from any obser-
vation that satisfies condition Cn, where negatives
are closer to the query than positives. Besides,
the proposed formulation introduces a new learn-
ing region where the gradient direction is inverted:
Cp, ∆p−n

q < γmin. We argue that this region,
where positives and negatives are nearly equally
distant to the query, covers cases with high un-
certainty such as fine-grain differences or missing
labels, which represent well-known challenges in

extreme multi-label setups. For these triplets, nega-
tives and positives could be, respectively, missing
labels and false positives. Therefore, by reverting
the learning process in this small margin, the net-
work does not take risks and separates positives,
while pulling negatives close to the query. Note
that if the negative had higher similarity than the
positive, this behaviour would not continue. We re-
fer the reader to Appendix A for a detailed analysis
with proofs of the propositions.

3.2 Label prototypes

We propose a prototypical contrastive learning
method aiming at narrowing down data-to-data
complexity during training, where we build label
prototypes as enhanced label embeddings. We do
so by using a Label Prototype Network gϕ that ag-
gregates three sources of information: label-text
embeddings hl, label centroids cl and learnable
free vectors vl (see Figure 2 for reference). The
resulting aggregation produces the label prototype,

zl = gϕ (hl, cl,vl) .

In particular, we use a transformer encoder block
layer (Vaswani et al., 2017) for gϕ to make the
three sources interact via self-attention and build
the label prototype via mean pooling of the result-
ing contextualized embeddings. These label pro-
totypes reduce the complexity of data-to-data rela-
tions, as they are estimated from centroids and free
vectors, which contain an aggregated information
from queries and labels not present when solely
using text-based label embeddings.

We compute label centroids using a momentum-
based approach that updates its values using the
batch queries containing the label at hand by:

cp ← α cp + (1− α)hi
q, (4)

where α is the momentum coefficient and hi
q is

the i-th query embedding such that p ∈ Pi. We
smoothly update the centroids using a high α value.

Learnable free or auxiliary vectors are normally
used in the literature to model side-information that
can be complementary to text descriptions, e.g. for
modeling attributes in dense retrieval (Kong et al.,
2022; Sun et al., 2024) and when modeling groups
of labels (Dahiya et al., 2023b) in XMC. We adopt
the latter strategy and define a bank of free vectors
B where every free vector vl ∈ B is shared across a
cluster Tc = {lo}|Tc|o=1 of semantically similar labels,



i.e., the free vector vl is the same ∀l ∈ Tc. The clus-
tering assignment is conducted before training by
finding a partition J of the label space Y such that
J = {Tc}|J |

c=1. In particular, we follow (Dahiya
et al., 2023b) and use a balanced hierarchical 2-
means clustering of label text representations hl

obtained with the pre-trained encoder. Note that the
number of free vectors |B| << L to ensure scala-
bility. These free vectors are learned during train-
ing as gradients flow through query-to-prototype
relations, thus providing an additional degree of
freedom that does not depend directly on the text of
queries or labels. Note that the authors in (Dahiya
et al., 2023b) directly add vl to hl, limiting the
contribution of free vectors to a linear combina-
tion. Conversely, we integrate free vectors as one
of the building components used by our Label Pro-
totype Network, thus learning how to incorporate
free vectors into the label prototypes for better per-
formance.

3.3 Encoder and prototype network training

We jointly train the encoder and the Prototype La-
bel Network using a multi-objective optimization.
We use the proposed dynamic triplet loss func-
tion LcdT (hq, zl) to optimize query-to-prototype re-
lations, which is how we compute our similarity
scores at inference time as shown in Figure 2. This
objective does not directly focus on the optimiza-
tion of text-based embeddings h, which is impor-
tant for learning a strong backbone. Therefore,
we propose to include two additional objectives,
LcdT (hq,hl) and LcdT (hl,hq), that promote query-
to-label and label-to-query relations in the text-
based embedding space, respectively. This type
of backbone optimization has proved to be effec-
tive for dense retrieval (Li et al., 2021; Mesquita
et al., 2022) as it increases the data-to-data rela-
tions exploited during training and learns a better
embedding space. Our final loss is then defined as:

L = LcdT (hq, zl) + LcdT (hq,hl) + LcdT (hl,hq) + λR,
(5)

where λ is the contribution of the regularization
termR. We bring this regularization from authors
in (Mohan et al., 2024), which regularize similari-
ties from a cross-attention module that incorporates
meta-data information into query embeddings to be
better than similarities produced without the meta-
data. We apply the same concept in our approach
to enforce query-to-prototype similarities to be bet-
ter than query-to-label ones, as they are enriched

with centroids and free vectors. We defineR as the
average ofRp andRn:

Rp =
1

P

∑
p∈Pi

sqp − bqp +m′, (6)

Rn =
1

N

∑
n∈Ni

bqn − sqn +m′, (7)

where Rp and Rn are the positive and negative
similarity differences, m′ is a fixed margin and
bql = hq · zl is the query-to-prototype similarity
for label l, i.e. a positive p or negative n label.
Note that Pi andNi are the number of positive and
negative comparisons in the batch, respectively.

4 Experiments

4.1 Datasets and metrics
We benchmark our method on 6 publicly available
XMC datasets (Bhatia et al., 2016) (details in Ta-
ble 7 of Appendix B) covering: product recommen-
dation from LF-AmazonTitles-131K, LF-Amazon-
131K and LF-AmazonTitles-1.3M; the prediction
of relevant Wikipedia categories in LF-WikiTitles-
500K and LF-Wikipedia-500K; and predicting sim-
ilar Wikipedia articles in LF-WikiSeeAlso-320K.
Note that these datasets include both short and
long-text settings, demonstrating the applicability
of PRIME in diverse contexts.

Our main focus is to compare with encoder-
only approaches: DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2021), SiameseXML (Dahiya
et al., 2021a), GraphFormer (Yang et al., 2021),
NGAME (Dahiya et al., 2023a), DEXA (Dahiya
et al., 2023b) and DEXML (Gupta et al.,
2024). However, we also benchmark PRIME
with classifier methods: XR-Transformer (Zhang
et al., 2021b), LightXML (Jiang et al., 2021),
ELIAS (Gupta et al., 2022), CascadeXML (Khar-
banda et al., 2022), PINA (Chien et al., 2023) and
Renée (Jain et al., 2023). We mainly adopt pre-
cision and propensity-scored precision (P@k and
PSP@k) metrics defined at (Bhatia et al., 2016) for
evaluation.

4.2 Implementation details
Hard negative and positive sampling. Triplet
selection involving hard negatives and positives
can have a significant impact on performance. We
balance the visualization of positive labels by sam-
pling with a distribution over propensity scores of
labels (see Appendix J for more details). Moreover,



we sample two positives per query, unless other-
wise stated. Please, note that the memory and com-
pute requirements increase with the number of sam-
pled positives (see Appendix E and F for more de-
tails on complexity). On the other hand, we adopt
the efficient NGAME (Dahiya et al., 2023a) neg-
ative sampling strategy, which constructs batches
in such a way that inexpensive in-batch sampling
offers semi-hard negatives.

Training and inference. We adopt common
practices and configurations from previous works.
To keep the comparison fair, we adopt the 66M pa-
rameter DistilBERT (Reimers and Gurevych, 2019)
encoder used in other papers and report results for
a single run. We compute sentence embeddings
by mean pooling token representations. We use
maximum inner product search between queries
and label prototype embeddings at inference time.
We refer the reader to Appendix H and I for further
details. Please, note that despite using triplet loss
objectives in our loss terms, PRIME could also be
optimized using InfoNCE type of losses as done
in (Gupta et al., 2024), however, we leave this
study for future work. Finally, we set all PRIME
configurations to fit in a single 80 GB A100 GPU.

4.3 Results
In tables 2 and 3 we present a comparative eval-
uation of PRIME against most relevant encoder-
based XMC algorithms on Amazon and Wikipedia
datasets, respectively. Our results demonstrate that
PRIME outperforms recent works (ANCE, DEXA
and DEXML) in all experiments and for most met-
rics. In particular, PRIME achieves state-of-the-
art performance in the largest and most challeng-
ing dataset LF-AmazonTitles-1.3M, outperforming
the brute-force approach DEXML using 16× more
computational resources, and surpassing by more
than 6 points in P@1 the rest of the methods. We
extend our comparison with brute force approaches
in Subsection 4.4 (see Figure 1 for a visual compar-
ison).

PRIME’s primary objective revolves around ef-
ficiency in XMC models and thus our focus on
classifier-free encoder-based approaches. Never-
theless, learning classifiers on top of PRIME’s
embeddings (we follow NGAME’s (Dahiya et al.,
2023a) One-vs-All approach) might provide mod-
erate gains over the encoder-only model. For
completeness, we present results using extreme
classifiers in Table 4 on the largest Amazon and
Wikipedia datasets, demonstrating the superior per-

Method P@1 P@3 P@5 PSP@5

LF-AmazonTitles-1.3M

DPR 44.64 39.05 34.83 36.72
ANCE 46.44 41.48 37.59 37.25
SiameseXML 43.80 38.60 34.94 28.48
NGAME 45.82 39.94 35.48 36.80
DEXA 51.92 44.01 38.86 37.31
DEXML ✦ 58.40 - 45.46 36.58

PRIME 58.58 50.83 45.44 39.07

LF-AmazonTitles-131K

GraphFormers 20.84 13.57 10.06 24.93
DPR 41.85 28.71 20.88 49.45
ANCE 42.67 29.05 20.98 49.03
SiameseXML 41.42 27.92 21.21 46.19
NGAME 42.61 28.86 20.69 48.71
DEXA 44.76 29.72 21.18 49.50
DEXML ✦ 42.52 - 20.64 47.40

PRIME 44.87 30.06 21.53 49.73

LF-Amazon-131K

DPR 43.30 29.74 21.90 51.52
ANCE 44.87 30.31 21.89 50.12
NGAME 45.35 29.89 21.35 49.32
DEXA 46.64 30.93 22.06 50.38
DEXML ✦ - - - -

PRIME 48.09 32.39 23.34 53.43

Table 2: Classifier-free evaluation on product recom-
mendation.✦ denotes brute-force algorithm. Bold and
underlined numbers denote best and second best results,
respectively. ‘-’ indicates results not available.

formance of our PRIME proposal. Note that Renée
can be seen as a counterpart of DEXML as it learns
the extreme classifiers in a brute-force fashion,
i.e., without negative sampling. The results on
all datasets are included in Appendix C.

4.4 PRIME vs brute-force DEXML

DEXML (Gupta et al., 2024) has demonstrated that,
in the absence of classifiers, it is possible to boost
XMC performance when using the brute-force ap-
proach of pairing every query with all negative
labels in the dataset. However, this setup requires
substantially more resources than the rest of the
algorithms compared in Subsection 4.3.

In Table 5, we show that PRIME outperforms
DEXML for all relaxed setups, while requiring sub-
stantially less resources. Notably, PRIME achieves
better (Amazon data) or competitive (Wikipedia
data) performance than the most computationally
demanding configuration using ∼2.5 orders of
magnitude more negatives and 2.5 − 4× bigger



Method P@1 P@3 P@5 PSP@5

LF-Wikipedia-500K

GraphFormers 31.10 - 14.00 21.83
DPR 65.23 45.85 35.23 49.90
ANCE 63.33 43.35 33.12 39.71
SiameseXML 50.33 32.81 24.86 32.51
NGAME 77.92 54.87 40.95 57.33
DEXA 79.99 57.08 42.52 57.68
DEXML ✦ 85.78 - 50.53 58.97

PRIME 85.37 65.56 50.92 57.74

LF-WikiTitles-500K

GraphFormers 24.53 - 11.33 19.53
ANCE 29.68 - 12.51 21.18
NGAME 29.68 18.06 12.51 21.18
DEXA 34.76 20.88 14.39 23.83
DEXML ✦ - - - -

PRIME 46.33 25.98 18.09 24.03

LF-WikiSeeAlso-320K

DPR 41.66 27.16 20.66 36.25
ANCE 44.35 29.15 21.99 37.15
SiameseXML 40.70 27.16 20.74 35.67
NGAME 43.58 28.01 20.86 36.03
DEXA 46.57 29.92 22.26 38.27
DEXML ✦ - - - -

PRIME 48.00 31.41 23.53 40.20

Table 3: Classifier-free evaluation on Wikipedia cate-
gory and similar page prediction.✦ denotes brute-force
algorithm and bold and underlined best and second best.
‘-’ indicates that results are not available.

batch sizes. Furthermore, as we can observe from
Table 6 (PRIME-lite vs PRIME) it is reasonable
to think that increasing PRIME’s batch size and
number of positives would improve performance,
while still using much less resources than DEXML.
However, our focus in this work is to propose a
high performing method that can run in a single
GPU, aiming at keeping the scaling capabilities
needed in XMC.

4.5 Understanding PRIME’s components

In this section we analyze key components of our
Label Prototype Network and the loss function. We
run a light configuration of PRIME (lite) for faster
experimentation (one positive and half batch size).

Figure 3 depicts the performance of PRIME-lite
compared to variations when ablating free vectors
(w/o vl) and centroids (w/o cl). While using free
vectors clearly boosts final performance, the ad-
dition of centroids have a remarkable impact on
faster convergence reaching DEXA’s final perfor-

Method P@1 P@5 PSP@1 PSP@5

LF-AmazonTitles-1.3M

XR-Transf. (W) 50.14 39.98 20.06 27.79
CascadeXML (W) 47.82 38.31 17.17 24.76
NGAME (W) 54.69 42.80 30.01 35.29
DEXA (W) 55.76 42.96 29.12 34.86
Renée (W) ✦ 56.04 45.32 28.54 36.14

PRIME (θ) 58.58 45.44 32.14 39.07
PRIME (W) 59.62 46.75 31.20 38.64

LF-Wikipedia-500K

CascadeXML(W) 81.13 49.12 32.12 49.37
LightXML(W) 81.59 47.64 31.99 46.53
ELIAS(W) 81.26 48.82 35.02 51.13
PINA (W) 82.83 50.11 - -
NGAME (W) 84.01 49.97 41.25 57.04
DEXA (W) 84.92 50.51 42.59 58.33
Renée (W) ✦ 84.95 51.68 39.89 56.70
OAK (θ,W) ✧ 85.23 50.79 45.28 60.80

PRIME (θ) 85.37 50.92 40.60 57.74
PRIME (W) 85.75 51.58 40.29 58.61

Table 4: Comparative evaluation against XMC methods
using OVA classifiers (W). Note that (θ,W) methods
ensemble the encoder and classifier predictions. ✦ de-
notes brute-force algorithm and ✧ algorithm using extra
meta-data information. Bold and underlined denote best
and second best.

mance 5× faster. We further analyze the impact of
the number of free vectors in Appendix D. As ex-
pected, we observe a positive trend in performance
when we increase the number of free vectors.

We analyze in Table 6 the impact of the different
terms in PRIME’s loss function (Equation 5). Re-
sults obtained demonstrate that: 1) although we use
label prototypes at inference time, optimizing text-
based query-to-label and label-to-query relations is
crucial for higher encoder quality; and 2) adopting
the proposed dynamic margin md and the regular-
ization consistently improve the results. Finally,
increasing the batch size and adding one positive
during training achieves best performance.

5 Conclusion

This paper proposes PRIME, a novel prototypical
extreme multi-label classification method demon-
strating that encoder-based models do not need to
sacrifice efficiency to deliver state-of-the-art perfor-
mance. PRIME’s key contributions revolve around
two key concepts, leveraging dynamic margin-
based contrastive learning and label prototypes.
The proposed Label Prototype Network learns to ef-
ficiently aggregate information from text-based em-
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Figure 3: Impact of key components of the Label Proto-
type Network, i.e., centroids (cl) and free vectors (vl)
in LF-AmazonTitles-1.3M dataset. For convenience, we
report results for PRIME-lite, single positive and half
batch size variant of PRIME.

Method
Batch Negative

P@1 PSP@5
size pool size

LF-AmazonTitles-1.3M

DEXML 8192
∼ 1.3M 58.40 36.58
∼ 90K 54.01 -
∼ 16K 49.16 -

PRIME 3200 ∼ 6.4K 58.58 39.07

LF-Wikipedia-500K

DEXML 2048
∼ 501K 85.78 58.97
∼ 22K 84.77 -
∼ 4K 82.85 -

PRIME 512 ∼ 1K 85.37 57.74

Table 5: Comparison of PRIME and DEXML demon-
strating the superiority of PRIME under similar budget.

PRIME-lite variations P@1 PSP@1 R@100

w/o [LcdT (hq,hl), md, LcdT (hl,hq),R] 51.71 26.27 57.02
w/o [md, LcdT (hl,hq),R] 56.34 31.23 60.79
w/o [LcdT (hl,hq),R] 57.40 29.69 62.30
w/o [R] 58.25 30.83 62.78

PRIME-lite 58.10 31.68 63.45
PRIME 58.58 32.14 63.56

Table 6: Ablation study in LF-AmazonTitles-1.3M over
various components of PRIME’s loss function.

beddings, label centroids and learnable free vectors
resulting in highly informative label prototypes for
improved results and faster convergence to high per-
formances. Additionally, by equipping our multi-
objective contrastive optimization with PRIME’s
novel dynamic margin loss, we demonstrate better
adaptability to the high granularity and ambiguity

posed by extreme label spaces. Our experiments
show that PRIME outperforms previous works and
the leading brute-force approaches in all experi-
ments and for most metrics.

6 Limitations

Our PRIME approach is based on encoder-only
architectures, however, decoder-only models have
recently demonstrated to be powerful embedding
extractors (Muennighoff et al., 2024; Wang et al.,
2024) and might have the potential to boost XMC
performance. However, based on the results of
decoder-only methods for XMC (Jung et al., 2023;
Zhou et al., 2024), it is still an open problem how to
achieve comparable performance to encoder-only
models. In addition, XMC revolves around effi-
ciency and, even if this decoder-only methods can
benefit from efficient fine-tuning, both training and
inference time would require higher computational
demands.

Furthermore, while PRIME demonstrates top
performance on standard XMC baselines, testing
it on larger datasets would be interesting to under-
stand scaling limitations when going beyond 1.3M
labels, e.g., how to define the size of the free vector
bank. Additionally, as most related work do, we
overlook dealing with unseen labels and we see it
as a limitation that future work should address.
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Appendices
A Triplet loss with clipped dynamic margin. Propositions and proofs.

Consider LT in Eq. 8 be the simplified version of the original triplet loss (Schroff et al., 2015) in the
angular domain,

LT = max (san − sap +m, 0)

=

{
∆sn−p

a +m, if ∆sp−n
a ≤ m

0, otherwise
, (8)

where san and sap denote the anchor-negative and the anchor-positive cosine similarities, respectively.
For convenience, we denote ∆sn−p

a = san − sap and ∆sp−n
a = sap − san as the differences of the cosine

similarities between the tuples anchor-positive and anchor-negative, respectively. Assuming normalized
feature vectors, Eq. 8 can take the values m ∈ [0, 2).

The traditional triplet loss formulation imposes a fixed margin during training such that all negatives,
regardless the degree of similarity to the positive, are pushed apart from the anchor while positives are
pulled close to the anchor given condition ∆sp−n

a ≤ m. The partial derivatives with respect to sap and
san look as follows: (

∂LT
∂sap

,
∂LT
∂san

)
=

{
(−1, 1), if ∆sp−n

a ≤ m

( 0, 0), otherwise
. (9)

A.1 Proof of proposition 1

Proposition 1. Consider the non-differentiable piece-wise linear function defining the adaptive margin
to be m (sap, san) = |sap − san|. Adding m (sap, san) into Eq. 8 expands the support of the function by
relaxing the margin constraint of the original triplet formulation, inducing a modulation effect that allows
semantically similar representations to be projected closer in the embedding space.

Proof. Consider m (sap, san) be the non-differentiable piece-wise linear margin function defined as,

m (sap, san) =

{
sap − san, if sap > san

san − sap, if sap ≤ san
, (10)

and consider as well (x)† be the operator that detaches x from the computational graph, thus avoiding the
gradients to back-propagate. Then, applying the dynamic margin in Eq. 8, the triplet loss becomes:

LdT =

{
san − sap + (san − sap)† , if ∆sp−n

a ≤ 0

0, otherwise
(11)

In Eq. 11 we show that adding the dynamic margin removes the fixed margin constraint of the original
triplet loss formulation enabling the model to learn from any observation that satisfies the inequality
sap ≤ san where negatives are closer to the anchor than positives. Besides, we observe that the new
function modulates the margin depending on the hardness of the triplets, allowing semantically similar
observations (sap ≈ san with sap ≤ san) to be closer in the embedding space. Conversely, semantically
different observations are pushed apart with higher strength.

A.2 Proof of Proposition 2

Proposition 2. Clipping the values of the dynamic margin partitions the triplet loss landscape allowing
positives and negatives in uncertain settings to be projected nearby in the embedding space.



Proof. Consider clip(x) be the clipping function in Eq. 12,

clip(x) =


x, if γmin ≤ x ≤ γmax

γmin, if x < γmin

γmax, if x > γmax

, (12)

then, the triplet loss with clipped dynamic margin becomes:

LcdT =

max
(
∆sn−p

a + clip(∆sp−n
a )†, 0

)
, if sap > san

max
(
∆sn−p

a + clip(∆sn−p
a )†, 0

)
, if sap ≤ san

=


0, if sap > san, ∆sp−n

a > γmin

∆sp−n
a + γmin, if sap > san, ∆sp−n

a < γmin

∆sn−p
a + clip

(
∆sn−p

a

)
†
, if sap ≤ san

, (13)

From Eq. 13 one can easily observe that the norm of the partial derivatives when sap ≤ san might
increase by a multiplicative factor of 2 if we do not detach the dynamic margin. We empirically observe
that increasing the gradient norm for those cases is preventing the model to converge properly. We
argue that doubling the norm of the gradients may generate instabilities during training that impact the
inter-class separation and the uniformity of the embedding space. By detaching the dynamic margin from
the computational graph, the partial derivatives become:

(
∂LdT
∂sap

,
∂LdT
∂san

)
=


( 0, 0), if sap > san,

(
∆p−n

a > γmin

)
( 1,−1), if sap > san,

(
∆p−n

a < γmin

)
(−1, 1), if sap ≤ san

. (14)

The new formulation introduces a new learning region (sap > san, ∆
p−n
a < γmin) to the dynamic

triplet loss where the gradient direction is inverted, i.e., negatives are pulled closer to the anchor while
positives are pushed apart until sap ≤ san. We argue that this region, where positives and negatives are
nearly equally distant to the anchor, accounts for those cases with a high degree of uncertainty such as
ambiguous observations or missing labels, a well known problem in extreme multi-label settings. By
reverting the learning process in this small margin, the network is capable of handling these scenarios.

In summary, we can observe the following cases depending on the hardness of the triplet construction:

• Easy cases → sap > san, ∆p−n
a > γmin. Positives are closer to the anchor than negatives and

positives are reasonably separated from negatives. Similarly to LT , we do not back-propagate those
observations.

• Hard cases→ sap ≤ san. We keep the same gradients (norm and direction) as the original triplet loss
for hard cases where negatives are closer to the anchor than positives while keeping the modulation
effect described in Proposition 1.

• Ambiguity and missing labels→ sap > san, ∆
p−n
a < γmin. The proposed dynamic margin relaxes

the original LT by allowing positives and negatives to live in a region where both representations
are closer to each other. Indeed, the direction of the partial derivatives are inverted, allowing an
inversion of the natural order of positives and negatives with respect to the anchor that accounts for
high uncertain observations.



Dataset #q train #l #q test #q/l #l/q

LF-AmazonTitles-131K 294.8K 131K 134.8K 5.15 2.29
LF-Amazon-131K 294.8K 131K 134.8K 5.15 2.29
LF-AmazonTitles-1.3M 2.2M 1.3M 0.97M 38.24 22.20
LF-Wikipedia-500K 1.8M 0.5M 0.8M 24.75 4.77
LF-WikiTitles-500K 1.8M 0.5M 0.8M 17.15 4.74
LF-WikiSeeAlso-320K 693.1K 312.3K 177.5K 2.11 4.68

Table 7: Dataset statistics for benchmark datasets. Key: #q (number of queries), #l (number of labels), #q/l (number
of queries per label), #l/q (number of labels per query).

B Datasets details

In Table 7 we present the details of the datasets used in Section 4. The datasets consider multiple real-
world applications. In particular, LF-Wikipedia-500K, and LF-Wikipedia-500K involve predicting the
relevant categories given the title or the full Wikipedia page, respectively. The LF-WikiSeeAlso-320K
dataset addresses the prediction of similar Wikipedia articles. On the other hand, LF-AmazonTitles-131K
and LF-AmazonTitles-1.3M involve recommending similar products using the product title. The LF-
Amazon-131K dataset is similar to LF-AmazonTitles-131K, but adding long product descriptions to the
product titles. Finally, the label is endowed with a short description for all of these datastes.

C Comparison against methods using classifiers

Many works in the XMC literature design efficient strategies to train a One-vs-All (OVA) classifier
W. On the one hand, some methods just train the classifier and do not focus on training backbone
encoders that can be used to compute predictions, as it is the case for XR-Transformer (Zhang et al.,
2021b), LightXML (Jiang et al., 2021), ELIAS (Gupta et al., 2022), CascadeXML (Kharbanda et al.,
2022), PINA (Chien et al., 2023) and Renée (Jain et al., 2023). On the other hand, methods such as
NGAME (Dahiya et al., 2023a), DEXA (Dahiya et al., 2023b) and OAK (Mohan et al., 2024) train the
OVA classifiers after encoder training and, then, ensemble the scores predicted by each of the stages, which
increases inference complexity (two ANN search structures are required). Note that OAK also introduces
external information to enrich the queries, e.g. hyper-link information in Wikipedia datasets. The results
presented in Table 8 demonstrate that PRIME with and without extreme classifiers is competitive and
sometimes provides better performance than classifier-based methods. PRIME achieves top P@1 in 3 out
of 6 datasets (4 if we exclude OAK, which exploits additional meta-data information).



Method P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5

Datasets −→ LF-Amazon-131K LF-AmazonTitles-1.3M LF-AmazonTitles-131K

XR-Tranf. (W) 45.61 22.32 34.93 49.24 50.14 39.98 20.06 27.79 38.10 18.32 28.86 39.59
ELIAS (W) - - - - - - - - 40.13 19.54 31.05 42.88
CascadeXML (W) - - - - 47.82 38.31 17.17 24.76 35.96 18.15 - -
NGAME (W) 46.53 22.02 38.53 50.45 54.69 42.80 28.23 34.48 44.95 21.20 38.25 48.42
NGAME (θ,W) 46.65 22.03 38.67 50.12 56.75 44.09 29.18 35.36 46.01 21.47 38.81 49.43
DEXA (W) 47.12 22.35 38.86 50.59 55.76 42.95 30.01 35.29 45.78 21.29 38.57 48.56
DEXA (θ,W) 47.16 22.42 38.70 50.97 56.63 43.90 29.12 34.86 46.42 21.59 39.11 49.65
PINA (W) 46.76 23.20 - - - - - - - - - -
Renée (W) ✦ 48.05 23.26 40.11 53.67 56.04 45.32 28.54 36.14 46.05 22.04 39.08 50.48

PRIME (θ) 48.09 23.34 40.48 53.43 58.58 45.44 32.14 39.07 44.87 21.53 39.59 49.73
PRIME (W) 48.20 23.28 40.16 53.22 59.62 46.75 31.20 38.64 45.26 21.48 39.29 49.44

Datasets −→ LF-WikiTitles-500K LF-Wikipedia-500K LF-WikiSeeAlso-320K

LightXML(W) - - - - 81.57 47.64 31.99 46.53 34.50 16.83 17.85 24.16
XR-Transf.(W) - - - - 81.62 47.85 33.58 47.81 42.57 21.30 25.18 33.79
CascadeXML(W) 47.29 19.00 19.19 19.75 81.13 49.12 32.12 49.37 - - - -
NGAME (W) - - - - 84.01 49.97 41.25 57.04 45.72 22.06 - -
NGAME (θ,W) 39.04 16.08 23.12 23.03 84.01 49.97 41.25 57.04 47.65 23.68 33.83 41.03
DEXA (W) - - - - 84.92 50.51 42.59 58.33 - - - -
DEXA (θ,W) 47.41 17.62 25.27 24.03 83.52 50.85 42.15 57.38 47.11 22.71 31.82 38.78
Renée (W) ✦ - - - - 84.95 51.68 39.89 56.70 47.86 24.05 32.02 40.90
PINA (W) - - - - 82.83 50.11 - - 44.54 22.92 - -
OAK (θ,W) ✧ 44.82 17.67 25.79 24.90 85.23 50.79 45.28 60.80 48.57 23.28 33.92 40.44

PRIME (θ) 46.33 18.09 25.36 24.03 85.37 50.92 40.60 57.74 48.00 23.53 32.88 40.20
PRIME (W) 46.75 18.44 25.13 24.31 85.75 51.58 40.29 58.61 48.14 23.61 32.80 40.24

Table 8: Comparative evaluation against XMC methods using OVA classifiers (W). Note that (θ,W) methods
ensemble the encoder and classifier predictions. ✦ denotes brute-force algorithm and ✧ algorithm using extra
meta-data information. Bold and underlined denote best and second best.



# Auxiliary P@1 P@3 P@5Vectors

- 57.00 49.67 44.50
1,024 57.09 49.70 44.51
4,096 57.13 49.75 44.53
16,384 57.47 49.97 44.73
32768 57.63 50.09 44.83
65,536 57.87 50.31 45.03
131,072 58.10 50.39 45.05

Table 9: Performance in LF-AmazonTitles-1.3M when varying the number of free vectors used in PRIME-lite.

D Effect of the number of free vectors

We analyze the impact of the number of free vectors used in Table 9. More free vectors exhibit better
performance, leading to around 1% boost in P@1. Although this behaviour is aligned with observations
made in DEXA (Dahiya et al., 2023b) work, free vectors are less important for boosting performance for
our method.

E Computational complexity calculations

An encoder-based method will need to compute the embeddings of the queries and labels at every mini-
batch. Consider B and S be the batch size and the subset of labels considered in a mini-batch, respectively.
Moreover, K is the complexity of computing the embedding of a single query or label item and L is the
total number of labels. The computational complexity of different components is defined as follows:

1. O (KB) for embedding B queries.

2. O (K|S|) for embedding the labels considered in the mini-batch.

3. O (Bd|S|) for computing the loss. Recall that d refers to the dimensionality of the final embeddings
computed using the encoder.

This results in O (BK +KL+BdL) = O (KL+BdL) for a brute-force approach as S = L and
L≫ B. On the other hand, it translates to O

(
BK +B2d

)
as S ≈ B for PRIME as it uses a small pool

of labels.

F Memory complexity calculations

PRIME’s memory requirements can be analyzed in terms of static and dynamic components. PRIME
needs to store model parameters and gradients constantly on the GPU. The model parameters include the
encoder parameters (θ), prototype network parameters (ϕ) and free vectors (Bd). Consider B and S be
the batch size and the subset of labels considered in a mini-batch, respectively. Then dynamic memory
requirements include:

1. O
(
(|S|+B)(t2 + td)

)
for embedding queries queries and labels. Moreover, t is the max sequence

length for the text in the mini-batch.

2. O (|S|d) for auxiliary vectors and label centroids.

3. O (d|S|) for the label prototype network.

G Additional related works

Early XMC methods focused on efficient learning of classifiers albeit with fixed sparse (Babbar and
Schölkopf, 2017; Jain et al., 2016; Yen et al., 2017; Tagami, 2017) or dense features (Jain et al., 2019).
These methods attempt to learn a tree (Prabhu and Varma, 2014; Jain et al., 2016; Prabhu et al., 2018a),



Dataset Number of
Free Vectors

Batch
Size γmin γmax epochs Learning rate

lr
Maximum seq.

len tmax

LF-AmazonTitles-131K 65,536 3200 0.1 0.3 300 0.0003 32
LF-Amazon-131K 65,536 512 0.1 0.3 300 0.0003 128
LF-AmazonTitles-1.3M 131,072 3200 0.1 0.3 300 0.0003 32
LF-WikiTitles-500K 65,536 3200 0.1 0.3 300 0.0002 32
LF-Wikipedia-500K 65,536 512 0.1 0.3 50 0.0001 256
LF-WikiSeeAlso-320K 65,536 1024 0.1 0.3 200 0.0001 128

Table 10: PRIME’s hyper-parameter values on benchmark datasets for reproducibility. Most hyper-parameters were
set to their default values across all datasets. PRIME samples a single positive per data point. Whereas, PRIME++
makes use of multiple positives and double the batch size of PRIME when possible.

embedding (Tagami, 2017; Bhatia et al., 2015) or a brute-force classifier (Babbar and Schölkopf, 2017,
2019). Furthermore, Slice (Jain et al., 2019), Parabel (Prabhu et al., 2018b), and PPD-Sparse (Yen et al.,
2017) discuss negative sampling in the context of fixed pre-trained features.

H Hyper-parameters

We set PRIME configurations to fit a single 80 GB A100 and it trains in around 60 hours on LF-
AmazonTitles-1.3M dataset. PRIME-lite, instead, can be trained in around 42 hours in the same dataset.

We do not conduct a fine-grain tuning of PRIME on every specific dataset aiming at demonstrating
the generality of PRIME’s hyper-parameters (see Table 10 for main hyper-parameters). We set the batch
size to maximize memory utilization in a single GPU, thus using a larger batch size of 3200 on the titles
datasets and reducing it for full-text datasets. Learning rate (lr) and number of epochs are set as proposed
by (Dahiya et al., 2023a). The remaining hyper-parameters α = 0.95 (for smooth centroid updates),
regularization weight λ = 0.1, regularization margin m′ = 0.1, and γmin and γmax for the loss function
are selected on the basis of performance (P@1) on a validation set of the smallest dataset and, then,
we keep them fixed across all datasets. It is worth noting that we explored other strategies for centroid
estimation by: 1) using multiple queries for each label, which led to minor gains (0.1-0.2%) at the cost of
increased computation due to having to encode more query textual embeddings batch-wise; 2) using the
exact label centroids in the inference phase, which led to comparable performance.

Additionally, we use AdamW optimizer and a weight decay of 0.01 that is removed from Bias,
LayerNorm and the bank of free vectors B. Moreover, for the Prototype Label Network we use a
Transformer Encoder layer (1 attention head, 1024 internal dimensionality, and 0.1 dropout). We tried
increased dimensionality and/or number of attention heads observing marginal gains, thus decided to
keep it simple. As for negative sampling, we use the NGAME sampler to select a subset of negatives and
adopt the default values for its cluster size. Finally, note that we always report model performance for
its weights in the last training epoch, i.e., we do not conduct any custom checkpoint selection based on
validation metrics.

I Inference

PRIME computes and saves the final label prototypes, i.e., {zl}Lr=1, once the training is finished. Given a
new test query q, we follow the steps below:

1. Encode the query q as hq.

2. Compute the scores {h⊤
q zl}Lr=1. Note that hq and {zl}Lr=1 are L2-normalized.

3. Sort the label indices on the basis of scores and return top-k most relevant labels.

In practice, we use IndexFlatIP provided by the Faiss (Johnson et al., 2019) library. PRIME can
make predictions within a few milli-seconds on the LF-AmazonTitles-1.3M dataset on a single GPU. It
should be noted that the inference complexity of PRIME is similar to other XMC algorithms that make



Positive P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 R@100Sampling

Uniform 57.48 49.85 44.54 29.65 34.30 36.86 62.50
Proposed 58.10 50.39 45.05 31.68 36.12 38.55 63.45

Table 11: Impact of positive sampling on the PRIME-lite algorithm on the LF-AmazonTitles-1.3M dataset. The
proposed sampling results in prominent gains in the propensity score metrics (PSP@k).

predictions on the basis of text embeddings (Gupta et al., 2024) or classifiers (Jain et al., 2023). Finally,
an Approximate Nearest Neighbor (ANNS) index (Malkov and Yashunin, 2020) can be readily integrated
for datasets where label prototypes do not fit on a single GPU.

J Positive sampling

PRIME samples its positives from a distribution where the probability of sampling a positive is proportional
to its inverse propensity score (Jain et al., 2016). In particular, the probabilities for the i-th query qi are
defined as follows:

pil =
γl∑

j∈Pi
γj

.

Here γl is the inverse propensity score for the label l (please refer to (Jain et al., 2016) for more details)
and Pi is the set of positives for the i-th query data point. Such a positive sampling strategy leads to gains
across all evaluation metrics (please see Table 11 for results on LF-AmazonTitles-1.3M dataset). It should
be noted that the gains are more significant in the propensity score metrics (PSP@k), i.e., more benefits
are found on the tail labels.
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